Top-office11.ru

IT и мир ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диапазон изменения адресов подсетей

IPv4 калькулятор подсетей

ПараметрДесятичная записьШестнадцатеричная записьДвоичная запись
IP адрес95.47.253.2025F.2F.FD.CA01011111.00101111.11111101.11001010
Префикс маски подсети/24
Маска подсети255.255.255.0FF.FF.FF.0011111111.11111111.11111111.00000000
Обратная маска подсети (wildcard mask)0.0.0.25500.00.00.FF00000000.00000000.00000000.11111111
IP адрес сети95.47.253.05F.2F.FD.0001011111.00101111.11111101.00000000
Широковещательный адрес95.47.253.2555F.2F.FD.FF01011111.00101111.11111101.11111111
IP адрес первого хоста95.47.253.15F.2F.FD.0101011111.00101111.11111101.00000001
IP адрес последнего хоста95.47.253.2545F.2F.FD.FE01011111.00101111.11111101.11111110
Количество доступных адресов256
Количество рабочих адресов для хостов254

Познавательное о IPv4 .

IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Первая широко используемая версия. Протокол описан в RFC 791 (сентябрь 1981 года), заменившем RFC 760 (январь 1980 года).

IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (2 32 ) возможными уникальными адресами.

Традиционной формой записи IPv4 адреса является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками. Через дробь указывается длина маски подсети.

IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес. Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Иногда встречается запись IP-адресов вида «192.168.5.0/24». Данный вид записи заменяет собой указание диапазона IP-адресов. Число после косой черты означает количество единичных разрядов в маске подсети. Для приведённого примера маска подсети будет иметь двоичный вид 11111111 11111111 11111111 00000000 или то же самое в десятичном виде: «255.255.255.0». 24 разряда IP-адреса отводятся под номер сети, а остальные 32-24=8 разрядов полного адреса — под адреса хостов этой сети, адрес этой сети и широковещательный адрес этой сети. Итого, 192.168.5.0/24 означает диапазон адресов хостов от 192.168.5.1 до 192.168.5.254, а также 192.168.5.0 — адрес сети и 192.168.5.255 — широковещательный адрес сети. Для вычисления адреса сети и широковещательного адреса сети используются формулы:

  • адрес сети = IP.любого_компьютера_этой_сети AND MASK (адрес сети позволяет определить, что компьютеры в одной сети)
  • широковещательный адрес сети = IP.любого_компьютера_этой_сети OR NOT(MASK) (широковещательный адрес сети воспринимается всеми компьютерами сети как дополнительный свой адрес, то есть пакет на этот адрес получат все хосты сети как адресованные лично им. Если на сетевой интерфейс хоста, который не является маршрутизатором пакетов, попадёт пакет, адресованный не ему, то он будет отброшен).

Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов: если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).

IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.

IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).

Для получения IP-адреса клиент может использовать один из следующих протоколов:

  • DHCP (RFC 2131) — наиболее распространённый протокол настройки сетевых параметров.
  • BOOTP (RFC 951) — простой протокол настройки сетевого адреса, обычно используется для бездисковых станций.
  • IPCP (RFC 1332) в рамках протокола PPP (RFC 1661).
  • Zeroconf (RFC 3927) — протокол настройки сетевого адреса, определения имени, поиск служб.
  • RARP (RFC 903) Устаревший протокол, использующий обратную логику (из аппаратного адреса — в логический) популярного и поныне в широковещательных сетях протокола ARP. Не поддерживает распространения информации о длине маски (не поддерживает VLSM).

Адреса, используемые в локальных сетях, относят к частным. К частным относятся IP-адреса из следующих сетей:

  • 10.0.0.0/8
  • 172.16.0.0/12
  • 192.168.0.0/16

Также для внутреннего использования:

  • 127.0.0.0/8 — используется для коммуникаций внутри хоста.
  • 169.254.0.0/16 — используется для автоматической настройки сетевого интерфейса в случае отсутствия DHCP (за исключением первой и последней /24 подсети).

Полный список описания сетей для IPv4 представлен в RFC 6890.

Определение диапазонов адресов подсети

Дата добавления: 2013-12-23 ; просмотров: 4131 ; Нарушение авторских прав

Рис. 2-8. Разбитое на подсети адресное пространство класса В

Преимущества разбиения на подсети

Разбиение на подсети часто используют для обеспечения соответствия физической и логической топологии сети или Для ограничения широковешательного трафика. Дру­гие несомненные преимущества: более высокий уровень защиты (благодаря ограниче­нию неавторизованного трафика маршрутизаторами) и упрощение администрирова­ния (благодаря передачеуправления подсетями другим отделам или администраторам).

Соответствие физической топологии.Допустим, вам поручили спроектировать уни­верситетскую сеть, состоящую из 200 узлов, распределенных в четырех зданиях — Voter Hall, Twilight Hall, Monroe Hall и Sunderland Hall. В каждом здании планируется разме­стить по 50 узлов. Если интернет-провайдер выделил адрес 208.147.66.0 класса С, вам доступны адреса 208.147.66—208.147.66.254. Однако из-за размещения в четырех физи­чески отделенных зданиях, узлы не могут обмениваться данными по локальной сети. Расширив маску подсети на 2 бита (т. е. позаимствовав их у идентификатора узла), сеть» разбивают на четыре логические подсети, а для связи устанавливается маршрутизатор (рис. 2-9).

Ограничениешироковешательного трафика. Широковещание — рассылка сообще­ний с одного компьютера на все расположенные в локальном сегменте устройства. Широковещание существенно нагружает ресурсы, поскольку занимает полосу про­пускания и требует участия всех сетевых адаптеров и процессоров логического сегмен­та сети.

Маршрутизаторы блокируют широковещание и защищают сети от излишнего тра­фика. 11оскольку маршрутизаторы также определяют логические ограничения подсетей, разбиение на подсети позволяет косвенно ограничивать широковещательный трафик в сети.

Определение максимального количества узлов в сети

Зная сетевой адрес, определить максимальное количество узлов в сети просто: надо воз­вести 2 в степень, равную количеству битов в идентификаторе узла и вычесть 2. Напри­мер, в сетевом адресе 192.168.0.0/24 под идентификатор узла отведено 8 бит, поэтому возможное максимальное число узлов 2 5 — 2 = 254.

Количество узлов в подсети.Количество идентификаторов узлов в подсети опре­деляется также, как и узлов в сети — оно равно Т — 2, где х — количество бит в иден­тификаторе узла. Например, в адресе 172.16.0.0/24 резервируется 8 бит под иденти­фикатор узла, поэтому число узлов в подсети равно 2 — 2, т. е. 254. Дня вычисления количества узлов во всей сети умножают полученный результат на количество под­сетей. В нашем примере адресное пространство 172.16.0.0/24 даст 254 сетей х 256 узлов = 65 024.

Конфигурируя адресное пространство и маски подсети в соответствии с требовани­ями сети убедитесь, что отвели на идентификатор узла достаточно бит с учетом возмож­ного увеличения количества узлов в подсети в будущем.

Десятично-точечная форма маски подсети позволяет определить диапазоны IP-адресов в каждой подсети простым вычитанием из 256 числа в соответствующем октете маски. Например, в сети класса С с адресом 207.209.68.0 с маской подсети 255.255.255.192 вы­читание 192 из 256 даст 64. Таким образом, новый диапазон начинается после каждого 64 адреса: 207.209.68.0-207.209.68.63, 207.209.68.64-207.209.68.127 и т.д. В сети клас­са В 131.107.0.0 с маской подсети 255.255.240.0 вычитание 240 из 256 дает 16. Следова­тельно, диапазоны адресов подсетей группируются по 16 в третьем октете, а четвертый октет принимает значения из диапазона 0—255: 131.107.0.0—131.107.15.255, 131.107.16.0— 131.107.31.255 и т.д.

Помните, что узлам нельзя назначать идентификаторы из одних нулей или единиц, так что исключаются первый и последний адрес каждого диапазона.

Обьясните как росчитать диапазон измененений адрес подсети

17.12.2012, 23:14

Определить адрес подсети
по адресу узла 172.30.1.33 и маски подсети 255.255.255.224 определите адрес сети

Как разбить адрес на подсети
IP-адрес 192.168.10.0/21 Нужно разбить на 3 подсети 1) Указать адреса подсетей 2) Диапазоны.

Как определить из какой подсети ip адрес?
Здравствуйте. Собственно есть сети: 10.0.0.0/24 10.0.1.0/24 10.0.2.0/25 ,и есть ip.

Найти адрес узла подсети
Не знал куда написать, написал сюда, Вот есть задача, например сеть Айпи адрес 130.0.0.0, задача.

18.12.2012, 00:19218.12.2012, 01:24 [ТС]3

В Лабораторной роботе поставлено задание
Для заданных IP-адресов классов А, В и С и предложенных масок определить:
— Класс адреса;
— Максимально возможное количество подсетей, которую можно создать с
использованием данной маски;
— Диапазон изменения адресов подсетей;
— Максимальное число узлов в подсети.

Все остальное я нашел,а вот с диапазоном у меня проблемы,не имею ни малейшего понятия как его искать.Обшарил интернет,есть примеры но без обьяснения как они пришли к такому ответу,так что вся надежда на вас!

18.12.2012, 02:04

я снова не понял смысла «Диапазон изменения адресов подсетей» 🙂
видимо, во мне дело 🙂

Меню пользователя @ mokojumbot
18.12.2012, 07:47521.12.2012, 00:096

Если я правильно понял, то:

— Найти «интересующий» октет. Таковым является октет, в котором значение маски не равно 0 или 255. Поэтому в маске подсети 255.255.192.0 интере¬сующим октетом является третий (192).
— Найти разницу между значениями интересующих октетов смежных диапазонов, N (называемую также просто значением диапазона), вычтя значение интересую-щего октета из 256. В данном примере разница между диапазонами составляет:
N = 256 — 192 = 64.
3. Определить первый и последний адреса для каждой подсети, вначале установив значение интересующего октета, равное нулю, затем последовательно увеличи¬вая это значение на n. Например, если базовым адресом сети является 172.16.0.0 с маской 255.255.192.0, то разница между диапазонами (значение диапазона) равна 64 и интересующим октетом является третий. По¬этому первая подсеть имеет диапазон адресов от 172.16.0.0 до 172.16.63.255, Вторая – от 172.16.64.0 до 172.16.127.255 и т.д.
4. Наконец, удалить первую и последнюю подсети, а также первый и последний IP -адреса для каждой подсети.

21.12.2012, 00:09
21.12.2012, 00:09

Заказываю контрольные, курсовые, дипломные и любые другие студенческие работы здесь.

Определить адрес 1-го устройства в подсети
Здравствуйте. Имеется зада, но я не пойму что для чего. Помогите пожалуйста разобраться, с.

Адрес некоторого узла подсети равен 198.65.12.67
IP-адрес некоторого узла подсети равен 198.65.12.67, а значение маски для этой сети —.

Присвоение свитчу айпи-адрес маску подсети
Добрый день не могу присвоить свитчам ip adress и маску под сети. вожу команды но нечего не.

По ip-адресу и маске подсети получить адрес сети
Николай знает, что по ip-адресу и маске подсети можно получить адрес сети, но не знает, как именно.

Определение диапазона адресов подсети.

Федеральное агентство связи

Федеральное государственное образовательное бюджетное учреждение

высшего профессионального образования

Московский технический университет связи и информатики

Практикум по дисциплине “Вычислительные сети, системы и технологии”

Практическая работа № 1. 3

Практическая работа № 2. 7

Практическая работа № 3. 10

Практическая работа № 4. 15

Практическая работа № 5. 22

Практическая работа № 6. 25

Практическая работа № 7. 28

Практическая работа № 8. 31

Практическая работа № 1 Изучение сетевого уровня модели OSI на примере протокола IP Цель работы: Изучить правила адресации сетевого уровня, научиться распределять адреса между участниками сети передачи данных и организовывать маршрутизацию между сегментами сети Ход работы: 1. Изучить теоретические сведения: Сетевой уровень модели OSI Сетевой уровень отвечает за возможность доставки пакетов по сети передачи данных – совокупности сегментов сети, объединенных в единую сеть любой сложности посредством узлов связи, в которой имеется возможность достижения из любой точки сети в любую другую. В связи с необходимостью перенаправлять пакеты из одного сегмента сети в другой, сетевые адреса должны удовлетворять следующим требованиям: · Адреса должны быть уникальны. В сети не может быть нескольких участников с одинаковыми адресами во избежание неоднозначности. · Сетевой адрес должен содержать информацию о том, как достичь получателя по сети. Это приводит к структурности адреса – адрес разбивается на части, позволяющие определить местоположение участника внутри сети. Структура может быть сложной многоуровневой, например адрес содержит информацию о стране, области, населенном пункте, предприятии, здании, отделе и т.д. или простой, содержащей номер сети и номер компьютера в сети. По сложной структуре легче построить маршрут прохождения пакета, но адрес оказывается сложным и перегруженным часто ненужной информацией. Примером такой адресации может служить доменная адресация в Интернет, по адресу asu.bru.mogilev.by нетрудно понять, где находится данный участник сети и как до него добраться. Простая структура позволяет значительно сократить размер адреса и сохраняет возможность работы в сети любой структуры, но для этого могут потребоваться сложные и, часто, не столь очевидные алгоритмы, как в предыдущем случае. Протокол IP (InternetProtocol) Архитектуру сетевого уровня удобно рассматривать на примере сетевого протокола IP – самого распространенного в настоящее время, основного протокола сети Интернет. Термин «стек протоколов TCP/IP» означает «набор протоколов, связанных с IP и TCP(протоколом транспортного уровня)». Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетныхподсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами. Когда необходимо передать пакет между машинами, подключенными к разным подсетям, то машина-отправитель посылает пакет в соответствующий шлюз (шлюз подключен к подсети также как обычный узел). Оттуда пакет направляется по определенному маршруту через систему шлюзов и подсетей, пока не достигнет шлюза, подключенного к той же подсети, что и машина-получатель: там пакет направляется к получателю. Таким образом, адрес получателя должен содержать в себе: · номер (адрес) подсети; · номер (адрес) участника (хоста) внутри подсети. IP адреса представляют собой 32-х разрядные двоичные числа. Для удобства их записывают в виде четырех десятичных чисел, разделенных точками. Каждое число является десятичным эквивалентом соответствующего байта адреса (для удобства будем записывать точки и в двоичном изображении). 192.168.200.47 является десятичным эквивалентом двоичного адреса 11000000.10101000.11001000.00101111 Иногда применяют десятичное значение IP-адреса. Его легко вычислить 192*2563+168*2562+200*256+47=3232286767 или с помощью метода Горнера : (((192*256)+168)*256+200)*256+47=3232286767 Таблица 1. Перевод некоторых чисел из двоичной системы счисления в десятичную и обратно.

ДвоичноеДесятичное
10000000128
11000000192
11100000224
11110000240
11111000248
11111100252
11111110254
11111111255

Количество разрядов адреса подсети может быть различным и определяется маской сети.

Маска сети также является 32-х разрядным двоичным числом. Разряды маски имеют следующий смысл:

1. если разряд маски равен 1, то соответствующий разряд адреса является разрядом адреса подсети,

2. если разряд маски равен 0, то разрядом хоста внутри подсети.

Все единичные разряды маски (если они есть) находятся в старшей (левой) части маски, а нулевые (если они есть) – в правой (младшей).

Исходя из вышесказанного, маску часто записывают в виде числа единиц в ней содержащихся.

является правильной маской подсети (/21), а

является неправильной, недопустимой.

Нетрудно увидеть, что максимальный размер подсети может быть только степенью двойки (двойку надо возвести в степень, равную количеству нулей в маске).

При передаче пакетов используются правила маршрутизации, главное из которых звучит так: «Пакеты участникам своей подсети доставляются напрямую, а остальным – по другим правилам маршрутизации».

Таким образом, требуется определить, является ли получатель членом нашей подсети или нет.

Определение диапазона адресов подсети.

Определение диапазона адресов подсети можно произвести из определения понятия маски:

1. те разряды, которые относятся к адресу подсети, у всех хостов подсети должны быть одинаковы;

2. адреса хостов в подсети могут быть любыми.

То есть, если наш адрес 192.168.200.47 и маска равна /20, то диапазон можно посчитать:

11000000.10101000.1100ХХХХ.ХХХХХХХХ – диапазон адресов

где 0,1 – определенные значения разрядов,

Х – любое значение,

Что приводит к диапазону адресов:

Следует учитывать, что некоторые адреса являются запрещенными или служебными и их нельзя использовать для адресов хостов или подсетей. Это адреса, содержащие:

0 в первом или последнем байте,

255 в любом байте (это широковещательные адреса),

127 в первом байте (внутренняя петля – этот адрес имеется в каждом хосте и служит для связывания компонентов сетевого уровня).

Поэтому доступный диапазон адресов будет несколько меньше.

10.Х.Х.Х – для больших локальных сетей;

172.16.Х.Х – для больших локальных сетей, но применяется реже,

192.168.Х.Х – для маленьких (небольших) локальных сетей,

не может быть использован в сети Internet, т.к. отданы для использования в сетях непосредственно не подключенных к глобальной сети.

Команда ipconfig

Команда ipconfig отображает краткую информацию, т.е. только IP-адрес, маску подсети и стандартный шлюз для каждого подключенного адаптера, для которого выполнена привязка с TCP/IP.

2. Решить задачи.

1.Какие адреса из приведенного ниже списка являются допустимыми адресами хостов и почему:

2. Перечислите все допустимые маски, по какому принципу они получаются.

3. Определите диапазоны адресов подсетей (даны адрес хоста и маска подсети):

4. Какие из адресов

будут достигнуты напрямую с хоста

Определите диапазон адресов в его подсети.

5. Посмотрите параметры IP на своем компьютере с помощью команды ipconfig. Определите диапазон адресов и размер подсети, в которой Вы находитесь. Попробуйте объяснить, почему выбраны такие сетевые параметры и какие сетевые параметры выбрали бы Вы.

Ответить на контрольные вопросы

· Чем занимается сетевой уровень?

· Что такое сеть передачи данных?

· Какие требования предъявляются к сетевой адресации?

· Можно ли использовать в качестве сетевого МАС-адрес?

· Что такое маска подсети,?

· Какова структура IP-адреса?

· Чем определяется размер подсети?

· Как определить диапазон адресов в подсети?

· Как определить размер подсети?

Содержание отчета:

Тема, цель, решение задач и ответы на контрольные вопросы

Практическая работа № 2.

Дата добавления: 2018-06-01 ; просмотров: 2646 ;

Читать еще:  Постоянно меняется ip адрес
Ссылка на основную публикацию
Adblock
detector