Top-office11.ru

IT и мир ПК
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Qsort си реализация

Быстрая сортировка

Быстрая сортировка представляет собой усовершенствованный метод сортировки, основанный на принципе обмена. Пузырьковая сортировка является самой неэффективной из всех алгоритмов прямой сортировки. Однако усовершенствованный алгоритм является лучшим из известных методом сортировки массивов. Он обладает столь блестящими характеристиками, что его изобретатель Ч. Хоар назвал его быстрой сортировкой.

Для достижения наибольшей эффективности желательно производить обмен элементов на больших расстояниях. В массиве выбирается некоторый элемент, называемый разрешающим . Затем он помещается в то место массива, где ему полагается быть после упорядочивания всех элементов. В процессе отыскания подходящего места для разрешающего элемента производятся перестановки элементов так, что слева от них находятся элементы, меньшие разрешающего, и справа — большие (предполагается, что массив сортируется по возрастанию).

Тем самым массив разбивается на две части:

  • не отсортированные элементы слева от разрешающего элемента;
  • не отсортированные элементы справа от разрешающего элемента.

Чтобы отсортировать эти два меньших подмассива, алгоритм рекурсивно вызывает сам себя.

Если требуется сортировать больше одного элемента, то нужно

  • выбрать в массиве разрешающий элемент;
  • переупорядочить массив, помещая элемент на его окончательное место;
  • отсортировать рекурсивно элементы слева от разрешающего;
  • отсортировать рекурсивно элементы справа от разрешающего.

Ключевым элементом быстрой сортировки является алгоритм переупорядочения .

Рассмотрим сортировку на примере массива:

10, 4, 2, 14, 67, 2, 11, 33, 1, 15.

Для реализации алгоритма переупорядочения используем указатель left на крайний левый элемент массива. Указатель движется вправо, пока элементы, на которые он показывает, остаются меньше разрешающего. Указатель right поставим на крайний правый элемент массива, и он движется влево, пока элементы, на которые он показывает, остаются больше разрешающего.

Пусть крайний левый элемент — разрешающий pivot . Установим указатель left на следующий за ним элемент; right — на последний. Алгоритм должен определить правильное положение элемента 10 и по ходу дела поменять местами неправильно расположенные элементы.

Движение указателей останавливается, как только встречаются элементы, порядок расположения которых относительно разрешающего элемента неправильный.

Указатель left перемещается до тех пор, пока не покажет элемент больше 10; right движется, пока не покажет элемент меньше 10.


Эти элементы меняются местами и движение указателей возобновляется.


Процесс продолжается до тех пор, пока right не окажется слева от left .


Тем самым будет определено правильное место разрешающего элемента.

Осуществляется перестановка разрешающего элемента с элементом, на который указывает right .

Разрешающий элемент находится в нужном месте: элементы слева от него имеют меньшие значения; справа — большие. Алгоритм рекурсивно вызывается для сортировки подмассивов слева от разрешающего и справа от него.

Реализация алгоритма быстрой сортировки на Си

Читать еще:  Длина окружности паскаль

Результат выполнения

Реализации алгоритмов/Сортировка/Быстрая

Некоторые из представленных здесь реализаций используют в качестве опорного элемента один из крайних элементов подмассива. Эти реализации страдают одним общим недостатком: при передаче им уже отсортированного массива в качестве параметра, их время работы становится порядка Θ ( n 2 ) )> .

В качестве опорного элемента следует выбирать случайный элемент массива, чтобы получить гарантированное время сортировки Θ ( n log ⁡ n ) в среднем. В случае, если использование случайных чисел нежелательно, в качестве опорного элемента можно выбрать, например, элемент в середине массива, но такие алгоритмы всё равно будут работать за Θ ( n 2 ) )> времени на некоторых специально-сконструированных массивах.

Содержание

VBA [ править ]

Работает для произвольного массива из n целых чисел.

C# [ править ]

C [ править ]

Работает для произвольного массива из n целых чисел.

Исходный вызов функции qs для массива из n элементов будет иметь следующий вид.

C# [ править ]

C# с обобщёнными типами [ править ]

Тип Т должен реализовывать интерфейс IComparable .

C# с использованием лямбда-выражений [ править ]

C++ [ править ]

Быстрая сортировка на основе библиотеки STL [ править ]

Для вещественных чисел [ править ]

Java [ править ]

Java с инициализацией и перемешиванием массива [ править ]

и с измерением времени сортировки массива нанотаймером (работает только если нет совпадающих элементов массива).

Java без рекурсии, с использованием стека [ править ]

пошаговый алгоритм с возможностью вывода на экран текущего действия

JavaScript [ править ]

Python [ править ]

Через list comprehension:

Joy [ править ]

PHP [ править ]

Haskell [ править ]

Математическая версия — с использованием генераторов:

Данная версия алгоритма является самой короткой из возможных, но тратит слишком много дополнительной памяти. На практике такой алгоритм использоваться не может. Стоит также отметить, что списки — неудачный выбор для реализации быстрой сортировки.

Common Lisp [ править ]

В отличие от других вариантов реализации на функциональных языках, представленных здесь, приводимая реализация алгоритма на Лиспе является «честной» — она не порождает новый отсортированный массив, а сортирует тот, который поступил ей на вход, «на том же месте». При первом вызове функции в параметры l и r необходимо передать нижний и верхний индексы массива (или той его части, которую требуется отсортировать). Код использует «императивные» макросы Common Lisp’а.

Pascal [ править ]

В данном примере показан наиболее полный вид алгоритма, очищенный от особенностей, обусловленных применяемым языком. В комментариях показано несколько вариантов. Представленный вариант алгоритма выбирает опорный элемент псевдослучайным образом, что, теоретически, сводит вероятность возникновения самого худшего или приближающегося к нему случая к минимуму. Недостаток его — зависимость скорости алгоритма от реализации генератора псевдослучайных чисел. Если генератор работает медленно или выдаёт плохие последовательности ПСЧ, возможно замедление работы. В комментарии приведён вариант выбора среднего значения в массиве — он проще и быстрее, хотя, теоретически, может быть хуже.

Читать еще:  Что такое дизассемблер

Внутреннее условие, помеченное комментарием «это условие можно убрать» — необязательно. Его наличие влияет на действия в ситуации, когда поиск находит два равных ключа: при наличии проверки они останутся на местах, а при отсутствии — будут обменены местами. Что займёт больше времени — проверки или лишние перестановки, — зависит как от архитектуры, так и от содержимого массива (очевидно, что при наличии большого количества равных элементов лишних перестановок станет больше). Следует особо отметить, что наличие условия не делает данный метод сортировки устойчивым.

Устойчивый вариант (требует дополнительно O(n)памяти)

Быстрая сортировка, нерекурсивный вариант [ править ]

Нерекурсивная реализация быстрой сортировки через управляемый вручную стек. Функции compare и change реализуются в зависимости от типа данных.

Частично рекурсивная реализация [ править ]

Реализация на языке pascal с одной рекурсивной ветвью. После разделения массива меньшая часть сортируется рекурсивным вызовом, а бо’льшая — в цикле. Это гарантирует глубину рекурсии не более lg(N).

Пример реализации алгоритма в объектно-ориентированном стиле с обобщением по типу данных (Generics) [ править ]

В представленной реализации алгоритма быстрой сортировки элементов массива порядок сортировки определяется пользовательской функцией обратного вызова:

которая должна удовлетворять условиям контракта вызова и возвращаемого значения:

Библиотечный модуль [ править ]

Пример использования [ править ]

Prolog [ править ]

Ruby [ править ]

SML [ править ]

This example demonstrates the use of an arbitrary predicate in a functional language.

Основные виды сортировок и примеры их реализации

Памятка для тех, кто готовится к собеседованию на позицию разработчика

На собеседованиях будущим стажёрам-разработчикам дают задания на знание структур данных и алгоритмов — в том числе сортировок. Академия Яндекса и соавтор специализации «Искусство разработки на современном C++» Илья Шишков составили список для подготовки с методами сортировки, примерами их реализации и гифками, чтобы лучше понять, как они работают.

Пузырьковая сортировка и её улучшения

Сортировка пузырьком

Сортировка пузырьком — один из самых известных алгоритмов сортировки. Здесь нужно последовательно сравнивать значения соседних элементов и менять числа местами, если предыдущее оказывается больше последующего. Таким образом элементы с большими значениями оказываются в конце списка, а с меньшими остаются в начале.

Этот алгоритм считается учебным и почти не применяется на практике из-за низкой эффективности: он медленно работает на тестах, в которых маленькие элементы (их называют «черепахами») стоят в конце массива. Однако на нём основаны многие другие методы, например, шейкерная сортировка и сортировка расчёской.

Сортировка перемешиванием (шейкерная сортировка)

Шейкерная сортировка отличается от пузырьковой тем, что она двунаправленная: алгоритм перемещается не строго слева направо, а сначала слева направо, затем справа налево.

Читать еще:  Html вставка рисунка

Сортировка расчёской

Сортировка расчёской — улучшение сортировки пузырьком. Её идея состоит в том, чтобы «устранить» элементы с небольшими значения в конце массива, которые замедляют работу алгоритма. Если при пузырьковой и шейкерной сортировках при переборе массива сравниваются соседние элементы, то при «расчёсывании» сначала берётся достаточно большое расстояние между сравниваемыми значениями, а потом оно сужается вплоть до минимального.

Первоначальный разрыв нужно выбирать не случайным образом, а с учётом специальной величины — фактора уменьшения, оптимальное значение которого равно 1,247. Сначала расстояние между элементами будет равняться размеру массива, поделённому на 1,247; на каждом последующем шаге расстояние будет снова делиться на фактор уменьшения — и так до окончания работы алгоритма.

Простые сортировки

Сортировка вставками

При сортировке вставками массив постепенно перебирается слева направо. При этом каждый последующий элемент размещается так, чтобы он оказался между ближайшими элементами с минимальным и максимальным значением.

Сортировка выбором

Сначала нужно рассмотреть подмножество массива и найти в нём максимум (или минимум). Затем выбранное значение меняют местами со значением первого неотсортированного элемента. Этот шаг нужно повторять до тех пор, пока в массиве не закончатся неотсортированные подмассивы.

Быстрая сортировка

Этот алгоритм состоит из трёх шагов. Сначала из массива нужно выбрать один элемент — его обычно называют опорным. Затем другие элементы в массиве перераспределяют так, чтобы элементы меньше опорного оказались до него, а большие или равные — после. А дальше рекурсивно применяют первые два шага к подмассивам справа и слева от опорного значения.

Быструю сортировку изобрели в 1960 году для машинного перевода: тогда словари хранились на магнитных лентах, а сортировка слов обрабатываемого текста позволяла получить переводы за один прогон ленты, без перемотки назад.

Сортировка слиянием

Сортировка слиянием пригодится для таких структур данных, в которых доступ к элементам осуществляется последовательно (например, для потоков). Здесь массив разбивается на две примерно равные части и каждая из них сортируется по отдельности. Затем два отсортированных подмассива сливаются в один.

Пирамидальная сортировка

При этой сортировке сначала строится пирамида из элементов исходного массива. Пирамида (или двоичная куча) — это способ представления элементов, при котором от каждого узла может отходить не больше двух ответвлений. А значение в родительском узле должно быть больше значений в его двух дочерних узлах.

Пирамидальная сортировка похожа на сортировку выбором, где мы сначала ищем максимальный элемент, а затем помещаем его в конец. Дальше нужно рекурсивно повторять ту же операцию для оставшихся элементов.

Ссылка на основную публикацию
Adblock
detector